Characterization of the MCM homohexamer from the thermoacidophilic euryarchaeon Picrophilus torridus
نویسندگان
چکیده
The typical archaeal MCM exhibits helicase activity independently in vitro. This study characterizes MCM from the euryarchaeon Picrophilus torridus. While PtMCM hydrolyzes ATP in DNA-independent manner, it displays very poor ability to unwind DNA independently, and then too only under acidic conditions. The protein exists stably in complex with PtGINS in whole cell lysates, interacting directly with PtGINS under neutral and acidic conditions. GINS strongly activates MCM helicase activity, but only at low pH. In consonance with this, PtGINS activates PtMCM-mediated ATP hydrolysis only at low pH, with the amount of ATP hydrolyzed during the helicase reaction increasing more than fifty-fold in the presence of GINS. While the stimulation of MCM-mediated helicase activity by GINS has been reported in MCMs from P.furiosus, T.kodakarensis, and very recently, T.acidophilum, to the best of our knowledge, this is the first report of an MCM helicase demonstrating DNA unwinding activity only at such acidic pH, across all archaea and eukaryotes. PtGINS may induce/stabilize a conducive conformation of PtMCM under acidic conditions, favouring PtMCM-mediated DNA unwinding coupled to ATP hydrolysis. Our findings underscore the existence of divergent modes of replication regulation among archaea and the importance of investigating replication events in more archaeal organisms.
منابع مشابه
Characterization of glycerate kinase (2-phosphoglycerate forming), a key enzyme of the nonphosphorylative Entner-Doudoroff pathway, from the thermoacidophilic euryarchaeon Picrophilus torridus.
Picrophilus torridus has been shown to degrade glucose via a nonphosphorylative Entner-Doudoroff (ED) pathway. Here we report the characterization of a key enzyme of this pathway, glycerate kinase (2-phosphoglycerate forming). The enzyme was purified 5,100-fold to homogeneity. The 95 kDa homodimeric protein catalyzed the ATP-dependent phosphorylation of glycerate specifically to 2-phosphoglycer...
متن کاملThe Putative Mevalonate Diphosphate Decarboxylase from Picrophilus torridus Is in Reality a Mevalonate-3-Kinase with High Potential for Bioproduction of Isobutene
Mevalonate diphosphate decarboxylase (MVD) is an ATP-dependent enzyme that catalyzes the phosphorylation/decarboxylation of (R)-mevalonate-5-diphosphate to isopentenyl pyrophosphate in the mevalonate (MVA) pathway. MVD is a key enzyme in engineered metabolic pathways for bioproduction of isobutene, since it catalyzes the conversion of 3-hydroxyisovalerate (3-HIV) to isobutene, an important plat...
متن کاملTRNomics: a comparative analysis of Picrophilus torridus with other archaeal thermoacidophiles.
In the euryarchaeal thermoacidophile Picrophilus torridus DSM 9790, we identified a copy of rare tRNA(Ile)(TAT) gene, along with the other 47 tDNAs with the help of our in-house program. Further, tRNAs of P. torridus were also compared with other archaeal thermoacidophiles Thermoplasma acidophilum, T. volcanium, Sulfolobus solfataricus and S. tokodaii.
متن کاملCharacterization of group II chaperonins from an acidothermophilic archaeon Picrophilus torridus
Chaperonins are a type of molecular chaperone that assist in the folding of proteins. Group II chaperonins play an important role in the proteostasis in the cytosol of archaea and eukarya. In this study, we expressed, purified, and characterized group II chaperonins from an acidothermophilic archaeon Picrophilus torridus. Two genes exist for group II chaperonins, and both of the gene products a...
متن کاملCharacterization of Plasmid pPO1 from the Hyperacidophile Picrophilus oshimae
Picrophilus oshimae and Picrophilus torridus are free-living, moderately thermophilic and acidophilic organisms from the lineage of Euryarchaeota. With a pH optimum of growth at pH 0.7 and the ability to even withstand molar concentrations of sulphuric acid, these organisms represent the most extreme acidophiles known. So far, nothing is known about plasmid biology in these hyperacidophiles. Al...
متن کامل